Schwarz preconditioning for high order edge element discretizations of the time-harmonic Maxwell's equations

نویسندگان

  • Marcella Bonazzoli
  • Victorita Dolean
  • Richard Pasquetti
  • Francesca Rapetti
  • M. Bonazzoli
  • V. Dolean
  • F. Rapetti
چکیده

We focus on high order edge element approximations of waveguide problems. For the associated linear systems, we analyze the impact of two Schwarz preconditioners, the Optimized Additive Schwarz (OAS) and the Optimized Restricted Additive Schwarz (ORAS), on the convergence of the iterative solver.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Edge Finite Elements of Variable

I review the main ideas behind the construction of edge elements of variable order 16, 39, 18], and discuss the possibility of extending the construction to Nedelec's elements of the rst kind 31]. A motivation leading to the deenition of hp-interpolation operators is highlighted, and their impact on the hp-discretizations of Maxwell's equations discussed.

متن کامل

High-Order Numerical Methods for Maxwell's Equations on Unstructured Meshes

For more than fifteen years, spectral finite elements (i.e. finite element methods on hexahedral meshes with mass-lumping) showed their efficiency to model the propagation of acoustic and elastic waves in the time domain, in particular in terms of accuracy. Moreover, their mixed formulation [1] dramatically increases their efficiency in terms of storage and computational time. This approach, wh...

متن کامل

Optimized Schwarz Methods for curl-curl time-harmonic Maxwell's equations

Like the Helmholtz equation, the high frequency time-harmonic Maxwell’s equations are difficult to solve by classical iterative methods. Domain decomposition methods are currently most promising: following the first provably convergent method in [4], various optimized Schwarz methods were developed over the last decade [2, 3, 10, 11, 1, 6, 13, 14, 16, 8]. There are however two basic formulation...

متن کامل

DG discretization of optimized Schwarz methods for Maxwell's equations

In the last decades, Discontinuous Galerkin (DG) methods have seen rapid growth and are widely used in various application domains (see [13] for an historical introduction). This is due to their main advantage of combining the best of finite element and finite volume methods. For the time-harmonic Maxwell equations, once the problem is discretized with a DG method, finding robust solvers is a d...

متن کامل

Preconditioning High-Order Discontinuous Galerkin Discretizations of Elliptic Problems

In recent years, attention has been devoted to the development of efficient iterative solvers for the solution of the linear system of equations arising from the discontinuous Galerkin (DG) discretization of a range of model problems. In the framework of two level preconditioners, scalable non-overlapping Schwarz methods have been proposed and analyzed for the h–version of the DG method in the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017